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1. GENERAL

Recently, non-axisymmetric convection in (vertical) directional solidification

experiments has been observed. It has been suggested that the flow character is a

consequence of the lack of azimuthal symmetry in the temperature field. Motivated by

these observations we have examined the consequences of deviations from axisymmetric

wail temperature conditions in a vertical differentially heated cylinder. We show that the

degree of asymmetry exhibited by the flow depends on the ratio between the amplitude of

the maximum azimuthal and vertical temperature difference and on the ratio between the

maximum calculated fluid velocity magnitude and "thermal diffusion" speed (thermal Peclet

number).

The object of this work was to develop and implement a numerical method capable of

solving the non-linear partial differential equations governing heat, mass and momentum

transfer in a 3D cylindrical geometry in order to examine the character of convection in an

asymmetrically heated cylindrical ampoule. The details of the numerical method, including

verification tests involving comparison with results obtained from other methods, is given

in Appendix 1. The results 1 of our study of 3D convection in an asymmetrically heated

cylinder is described in the following sections.

2. INTRODUCTION AN BACKGROUND

The character of convection during solidification has been examined using

numerical models of buoyancy-driven convection in cylindrical and rectangular geometries

[1-12]. Early work [1-3] includes a variety of imposed temperature boundary conditions.

These range from purely vertical temperature gradients which results in convection after a

critical value of the Rayleigh number is exceeded [4], to idealized conditions associated

with Bridgman-Stockbarger furnaces [3] which are imposed directly on the melt and crystal

without consideration of the heat transfer between the ampoule, furnace and sample. For

these boundary conditions, flow always occurs owing to the presence of radial temperature

gradients. Later models [5,6] have accounted for the presence of the ampoule, and the

details of furnace design. In an actual growth situation the thermal profile of the inner

surface of the furnace is not realized at the ampoule wail; it is modified by heat transfer

between the crystal, melt, ampoule and the furnace itself. The tendency is to reduce axial

temperature gradients, while radial temperature gradients may increase or decrease

1These results are contained in paper submitted to the Physics of Fluids A.
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depending on the specific nature of the heat transfer between the charge and ampoule [5].

The influence of melt convection on dopant distribution has been examined for dilute and

non-dilute melts [3,5,9]. For a given furnace-ampoule combination the amount of

compositional non-uniformity (or radial segregation) was shown to be a non-linear function

of the Rayleigh number "Ra". The growth rate and physical properties of the melt also

influence the degree of compositional uniformity in the grown crystal. These studies were

restricted to eases for which the thermal boundary conditions possessed azimuthal

symmetry.

Recently, non-axisymmetric convection has been observed in directional

solidification experiments conducted with low melting point, low thermal conductivity

materials [13,14]. The observed flows were explained by lack of azimuthal symmetry in

the temperature field caused by the fact that the particular Bridgman-Stockbarger

solidification apparatus precluded any control of the azimuthal temperature field. Indeed,

such a situation may be common in many instances where the Bridgman-Stockbarger

technique is employed owing to the difficulties involved with consmacting an axisymmetric

heating arrangement and in aligning the ampoule axis with the axis of the furnace. During

growth of high temperature materials, any misalignment of the ampoule will result in an

azimuthal variation in the radiation view factors for the ampoule. This will lead to

asymmetry in the temperature of the ampoule wall.

The object of this work is to examine the character of convection in an

asymmetrically heated cylindrical ampoule. In section 3 we formulate the model problem.

In section 4 we outline the pseudo-spectral collocation method used to solve the 3D

problem. The results are presented in section $ and discussed in section 6.

3. FORMULATION OF THE PROBLEM

A practically desirable Bridgman-Stockbarger set-up such as that described by

Dahkoul et al. [15] consists of three distinct thermal zones. The simplest arrangement has a

hot zone (in which, ideally, the temperature at the wall and in the melt should be almost

isothermal) and a cold zone. These are separated by a gradient zone in which a thermal

barrier controls the heat transfer between the ampoule and the hot and cold zones. The basic

Bridgman-Stockbarger model used here is shown in Fig. I. The fluid is differentially heated

in a vertical cylinder having a length 2H and a diameter D. The lower and upper endwalls

of the cylinder are maintained at constant temperatures TM and TH respectively (where TM

< TI-I). In this system the presence of the thermal barrier is approximated by taking the

cylinder wails to be adiabatic in the region corresponding to the gradient zone. In the hot

zone we impose asymmetry in the temperature distribution using a function which causes
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azimuthalandvertical deviationsfrom isothermalconditionson the cylinder wall. The

maximumlateraldeviationin temperatueisgivenby AT0(seeFig. 1).All boundariesof the

cylinderarerigid with no-slipconditionsfor thevelocities.
The equationsgoverningenergy,momentumandmasstransport arewritten in

primitive variablesfor cylindrical coordinatesandusingtheBoussinesqapproximation.
They are rendereddimensionlessusingL*, V*, L*/V* andTH- TM as characteristic

scales for length, velocity, time and temperature, respectively. The

dimensionlessequationsare:

--=0T AT _ V. grad T (1)
Ot Re Pr

c3V = _'V_ (grad V).V- grad p + _.R_a._ T k,
_t Re Pr Re 2

(2)

divV= 0, (3)

"_ (T-TM_ respectively represent the
where t is the time and V = ( Vr, v0, Vz ), p and _=(TH-TM)

dimensionless velocity, presure and temperature. The unit vector in the z-direction is

denoted by k, Pr = v_ is the l:h'andtl number, with v the kinematic viscosity and _c the
1(

thermal diffusivity, Ra = gtx(L*)3(TH-TM) is the Rayleigh number, with g the gravitational
_-v

acceleration, and ct the thermal expansion coefficient, and Re = L'V* is the Reynolds
V

number.

Several choices are possible for these characteristic scales. In our computations,

after trying several kinds of scaling, the choice V* = vRa (i.e. Re = Ra = Grashof
L* Pr Pr

number) proved to be the best for obtaining good convergence behavior. This scaling has

been suggested by Ostrach [16]. For the choice of L*, the length H proved to be more

convenient for computational purposes, primarily because of the chosen numerical method

(see section 3). By exploring the different scalings, we have noted that the convergence

behavior of the numerical method described in section 3, could be changed significantly

(for the worse) when the parameters multiplying diffusive terms (Laplacians) are too small

or too large. These considerations led us to recast equations (1) and (2) in the form
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_T_t= P_rrAT - _-rRaV" grad T , (4)

b__V_V= AV - R--a-(grad V).V- grad p + T k. (5)
8t l-'r

Finally equations (3-5) are solved as functions of the independent variables (r,0,z) in the

domain f_ = ] 0, 1 [ x [ 0, 2_ [ × ] -1, 1 [. Here the aspect ratio A is defined as 2H/D,

where D is the diameter.

The following conditions were applied at the initial iterate (t < 0)

with f(z) --

Vr = v0 = Vz = 0, (6a)

T = g(r,0,z) f(z), (6b)

1 E ex''l
1-exp(o)

and g(r,0,z) =1 + A0 L_ ex_" 4-2_1--) (cos(g-0)- 1) sin2(r-g-_A /_ 2 f

In order to avoid discontinuities in derivatives of the temperature, the abrupt transition

between the hot zone and the adiabatic zone the function f(z;_) is used. The parameter _ is

chosen such that were it not for the azimuthal temperature perturbation, the dimensionless

wall temperature due to f(z;_) would be almost equal to 1 for z > Za, where Za isthe z-

coordinate of the location of the upper limit of the adiabatic zone. The function g(r,0,z)

gives the initial condition for the azimuthal variation in temperature. The maximum

azimuthal temperature deviation is denoted by AT0. It is convenient to express this

deviation as a percentage of the axial temperature difference TH - TM; i.e. A0 = ATo×100%TH- TM "

AJl-Z,_exd-2z. -1 /
Table 1 gives A0 (Ao =2 v_T/ "_--7-/) for different values of Ao and different aspect

ratios.

The following dimensionless boundary conditions are applied at t > 0

Vr = v0 = Vz = 0 at z = + 1 and r = 1,

T=0 at z=-l, T=lat z=l,

T = g(r,0,z)f(z) at r = A& and z > Za (z # +1)

(7a)

(7b)

(7c)



= 0 at r -- andz < Z a, (7d)

The azimuthal temperature variation on the ampoule wall is given by g(1,0,z) and is

enforced only for the hot zone z > Za.

Table 1. Values of the percentage of azimuthal temperature difference A0

Aspect Ratio Ao A9

10%1 0. i

1 0.02 2%

1 0.2 20%

2 0.1 13.2%

0.22 26.4%

4. NUMERICAL METHOD

The equations (3-5) have been solved using a modified version of the Fourier-

Chebyshev pseudospectral method introduced by Pulicani and Ouazzani [17]. For this

method the singularity which arises at r=0 when using cylindrical coordinates (without

axisymmetry) [18] is avoided by using a change of dependent variables. The singularity

arises because r--O is an artificial boundary of the computational domain; i.e. it occurs only

by construction of the coordinate system. The change of variables used to cope with the

singularity is

.... (8)T=T vr=V__r.r v0_Ve _Vz and p=_-.r ' r ' --_-, Vz- r

Application of (3-8) yields a system of equations with T, Vr, Vz, p and _0, as unknowns.

Obviously, T - Vr = _z = _o -- P"= 0 at r = 0. These equations are then discretized with

respect to time, t = n St, by means of a second order semi-implicit scheme. The latter

employs a combination of the Adams-Bashforth and Crank-Nicolson schemes, namely



with

r _n+ 1

, -r- V") - 5t r[grad rJ '

(aivP) n+l-7-/ = 0,

Fn'n'l = 8t [_rr A(_)- 3Ra2Pr_ .grac_)In+ 2fi2_ [ _r. grac_)In-l,

(9)

(10)

(11)

and

Gn'n-l'n+l = _St [r A(_)- 2_ (grad _)" _T In +2PreStRa [ (grad _)"9_ ln-1+ [ T k ] n+t ,

where for convenience we have defined V = ( vr, v0, Vz ).

With this method [17], problems encountered with satisfying (I 1) are surmounted

by using artificial compressibility [19,20]. A false timestep is employed and the method is

only applicable for steady solutions to the system (3-7). Because of the stiffness of the

physical problem at low Prandtl numbers, obtaining rapid convergence with this method at

high Rayleigh numbers is difficult. In order to overcome this problem, we have modified

the method by introducing two iterative processes. An outer iteration which is related to

each timestep and an inner iteration which ensures that (11) is satisfied to some e<<0 for

each outer iterative step. It is clear that for lower values of £, this pseudo-unsteady method

takes on the character of an unsteady calculation. For this reason we have used an Adams-

Bashforth scheme to discretize the convective terms instead of simply taking them explicitly

[17] at the instant t = n St in _n,n-1 and _n,n-l,n+l.

A generalized ADI procedure [19] is then applied to reduce the problem to the

successive solution of one-dimensional problems. For clarity, we present the method only

as applied to the momentum transport equation. It is readily extended to cope with the

energy transport equation. At each time step the following problem is solved

(1- 2_A0)V*= G n'n-l'n+l . 8t r [grad P'] n+l'g?-i ,
(12a)



(1 Az)V..•" _ W ,

A,)Irlv"' °v'"
_n÷ldt+l =_n + V***,

( _1 n+l'_l+l_n+l,_t+t = _n+l,_ _ _, r div r,

(12b)

(12c)

(12d)

(12e)

where _ is a strictly positive constant and I.t (It = 0,1 .... Nit ) is the superscript

connected to the inner iterative process. The operator A occurring in (10) has been

decomposed so that A = Ar + A0+ Az. Here the Aot, are related to the independent

variables r, 0 and z, respectively. Note that for I.t = 0, grad yj = grad . Equation

(12e) has no physical meaning until 5_"n+l = ._n+l.rt+l _ _-n+l,_t = 0 (or practically

speaking, is sufficiently small), ff _._n+l is identically zero at each time step the method is

no longer pseudo-unsteady. The present way to deal with the pressure can be time

consuming when the number of internal iterations Ni.t is too high. However, since we seek

steady solutions, the iterative process has been introduced only to help the convergence

when the solution is very stiff. It is stopped as soon as the divergence of the velocity

reaches a certain value e. The maximum value of Nit is chosen such that the convergence is

obtained after a reasonable number of outer iterations, but not so high that the divergence of

the velocity is e at the beginning of the outer iteration. The optimum values of Nit and c will

be defined in the next section. A standard Fourier-Galerkin approximation [18] is

employed for the solution of (12a).

The most convenient (see section 2) choice of characteristic length is L* ---H. This

leads directly to the domain -1 < z < 1 which is required for the Chebyshev-collocation

method [20] used to solve equations (12b) and (12c). The boundary conditions are

introduced by replacing the right hand sides of (12b) and (12c) by the appropriate terms

[17].

The energy equation is solved in the same manner as the momentum transport

equations but, obviously, needs no inner iterations to satisfy the divergence equation. The

solution algorithm takes the following steps :

(i) With _n, _n-1, _n and _n-1 known, we deduce _.,n-1 and then T_'_÷1.

(ii) Using T n+l, _¢n and _-1, we calculate _n.n-l,n+l and then, finally, _,n+l and

_-n+l with (12).



In all of theresultswe presentherethe abovemethodrequiresa distribution of

pointssuchthat

Ok= 2r_k k = 0....N0-1, (13a)
NO '

Zj "- CO , j = 0 .... Nz-1, (13b)

Jri = -_N_-I! + 1 , i = 0 .... Nr-1, (13c)

with N r , N O and N z the number of collocation points between r = 0 and l/A, 0 = 0 and

2n, and z = -1 and 1, respectively.

In our discussion of the results we shall also refer to the residual of aS, denoted Ro,

which is calculated on the collocation points of 9 = {T, Vr, v0, vz}. Furthermore,

with

II ]
O(ri,Ok,zj) _ - O(ri,Ok,zj)_l

R_ = Max i,k,j 8t O(ri,0k,Zj) n+l

i=0 .... N r-1 , k=0,..,N k-1 , j=0 .... N z-1.

(14)

We denote the maximum values of v r, v o, v z, v x and Vy by vr max, v0 max, Vz max, Vx max

and Vy max, respectively. The variables v x and Vy are the velocities in Cartesian coordinates

such that v x = v r cos 0 - v 0 sin 0, and Vy = v r sin 0 + v 0 cos 0. As these maxima are

calculated at the collocation points particular to each method, small differences are expected

in the results.

For all the results presented in the following section the starting condition (6b) has

only been used for Ra = 10. For the others, the starting condition was the solution

calculated with a lower Ra. The adiabatic zone covers one fourth of the cylinder's height

when the aspect ratio A = 1 (i.e. Za = --0.5) and one eighth when A = 2 (i.e. Za = --0.75).

The calculations have been performed on a Cray XMP computer by using a spatial

resolution such that N r x N Ox N z = 13 x 20 x 31 when A = 1 and N r x N O x N z = 13 x

20x 61 when A = 2. For all calculations the parameter X (see (12e)) is equal to 1.3, 20<

Ni.t< 30, and the time-step 8t chosen between 1.10 -4 and 1.10 -5 according to the stiffness

of the solution. Note that we have stopped our calculations when the divergence div V _-

10 -8 and ResV = 10 .4 . No significant change in the values of the velocity and temperature

fields if divV and ResV are decreased further. For the problem described here a

comparison has been made between our method and the finite element code FIDAP
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[21,22]. For FIDAP an irregularly spaced Cartesian grid with nodes Nx×NyxNz = (9 x

llx 31) was employed (see Fig. 2).

For the purposes of presenting the results we define two dimensionless measures of the

velocity, a Reynolds number Re*max = Re*max = V-*maxD/V and a thermal Peclet number

Pe*max = VmaxD/n, where a "*" corresponds to the coordinate directions (i.e. r, z, q, x, or

y). The thermal Peclet number represents a ratio of the magnitudes of the maximum

dimesional convective velocity and a thermal diffusion velocity.

5. RESULTS

Table 2 shows the results of a comparison between our method and the finite

element code FIDAP [21,22]. The _,,alues of Re x max, Reymax and Rezmax, were obtained

with Ra = 250, 2500 and 1500. Clearly, there is good agreement between these two

methods for Ra between 250 and 2500, while for Ra=15000, the poor agreement is only

due to the smaller number of points in the z-direction employed for FIDAP.

Table 2. Comparison between results obtained from the Spectral method and from FIDAP

Ra

250

2500

15000

SPECTRAL

Rex max Reym_

10 7

60 61

263 192

Re_ max

20

103

286

FIDAP

Rex max

12

O67

295

Rey max Rez max

8 21

069 104

216 386

Table 3 summarizes the details of our computations for A = 1,2, 2500 < Ra < 64000 and

2% < A0 < 27%. A comparison of the velocity fields in the 0 = 0 ° and 180 ° sections for

A0 = 2% and Ra=2500, and Ra =24,000 is given in Fig. 3. The flow is barely perceptible

at the lower Ra. Comparison of Fig. 3 with Fig. 4., which shows the velocity fields for Ra

= 2500, 15000 and 24000, reveals the effect of increasing the temperature asymmetry. The

effect of increasing Ra at fixed A0 is also seen in Fig. 4. Note that the locations of the roll

centers change as Ra is increased. Figure 5. depicts the velocity and temperature fields for

three vertcial sections at Ra =15,000 for A0 = 20%. Horizontal sections of the velocity field

for the Ra= 15,000 case are shown in Fig. 6.

The effect of increasing the aspect ratio is seen upon comparison of Fig. 4 with

Fig. 7 which has been calculated for Ra - 2500 and 15000 with Ao = 0.2 (A0 = 26.4%).

The basic asymmetry of the flow is not affected significantly by the increase in aspect ratio,
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althoughthecentersof thetoroidal rolls areshifted.Horizontalsectionsof theflow shown

in Fig. 6 aredepictedin Fig.7.

Table3. Summaryof theresultsfor Pr = 10 -2

Ra

2500

6400

15000

24000

64000

A Ao

0

0.02

0.2

0.1

0.2

0

0.02

0.2

0.1

0.2

St

10-4

10-4

10-4

10-5

10-5

10-4

10-4

10-4

10-4

10-4

10-5

10-5

Rer max

70

69

61

69

69

112

128

205

222

220

209

188

Re0 max

56

44

59

123

99

0

42

254

175

228

0

0.02

0.2

0

10-4 242 0

10-4

7x10-5

1074

267

318

338

62

363

0

Rez max

122

120

103

114

125

168

191

314

307

286

294

425

384

376

373

583

Comparison of Figs. 8 and 9 for Ra = 15000 and A0 = 13.2% with Figs. 10 and 11

for Ra=2500, A0 =13.2%, reveals that in the higher Rayleigh number case two additional

cells have formed in the upper half of the cylinder. These are barely detectable in the

Ra=2500 case. At higher values of A0 these cells are able to develop well for lower values

of Ra. In Fig. 7 the twofold increase in A0 leads to well developed upper cells even at Ra

= 25OO.
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Figs. 12 and 13. depict the resultsobtained for Pr = 1, Ra = Gr = 2.5x105.

Comparisonof theseresultswith Figs. 8 and 9 (Pr = 10-2, Ra = 2500,Gr = 2.5x105)

revealsthe effect of increasingPr while holding the Grashofnumberfixed. There is a

decreasein thedegreeof asymmetryin theflow for the lower Prandtlnumbercase.The
cylinder isdominatedbya largeasymmetricroll whichextendsalongmostof thecylinder

with smallersecondaryroll alongthebottomof thecylinder.Theisothermswhich extend

into the adiabaticzonehavebeenmodifiedby theflow andareconsiderablyflatter than

their low Pr counterparts.

6. DISCUSSION AND SUMMARY

The results of an experimental investigation into the nature of asymmetric flow

during Bridgman-Stockbarger directional solidification of Salol by Neugebauer and Wilcox

[14] led to the conclusion that the degree of flow asymmetry decreases with increasing

convective flow velocities. Furthermore they conjectured that for the same experimental

conditions, low Prandtl number fluids to exhibit correspondingly less asymmetry owing to

the more rapid flow velocities which would necessarily ensue. It can be discerned from the

results presented in section 4 that our calculations predict that for a fixed value of Ao and Pl"

an increase in Re*max (in practical terms caused by an increase in AT=TH-TM ) tends to

amplify the asymmetry. Examination of the experimental results of [ 14] reveals that when

AT was increased, AT0, the azimuthal variation in temperature, remained the same. In other

words, the relative temperature asymmetry A0 was decreased. Thus, the observed decrease

in flow asymmetry can be explained merely by the fact that the azimuthal temperature

variation was less significant for the higher Ra cases. This trend is confirmed by our

calculations.

Our calculations do confirm the prediction made in [14] that, for otherwise

equivalent conditions, the higher Pr case will exhibit more asymmetry in the flow than the

low Pr case. That the flow asymmetry is reduced due to an increase in flow velocity

(Reynolds number)contradicts our results presented in Table 3 and Figs. 4-9. The

reduction in asymmetry can be explained, however, upon examination of relationship

between the degree of flow asymmetry and the thermal Peclet number. The latter scale

represents a thermal velocity magnitude. Table 4 clearly shows that at a fixed A0 there is an

increase in the degree of flow asymmetry as the thermal Peclet number increases.



Table4. Comparisonof Pecletnumbersfor thePr = 10-2andPr =1 cases.

Pr Per max _0m_ Pez max

10 -2 0.69 0.44 1.14

1 8.9211.02 22.83

12

In summary, we have examined the consequences of azimuthal asymmetry in

ampoule wall temperature in a differentially heated cylindrical ampoule containing an

incompressible Newtonian fluid. The study was motivated by recent observations of non-

axisymmetric convection in directional solidification experiments conducted with low

melting point, low thermal conductivity materials [13,14]. Our results indicate that for a

fixed value of the relative asymmetry in temperature A0, the degree of asymmetry in the

flow is accentuated as the thermal Peclet number is increased. For fixed Pr and Ra, the

flow asymmetry increases if A0 is increased.
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• FIGURE CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig.8

Fig. 9

Fig. 10
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Fig. 13

Model Bridgman-Stockbarger configuration.

Mesh used for the FIDAP calculations.

Comparison of the velocity fields in the 0 = 0°and 180 ° sections and the (r,z)

plane at z = 0 with A0=2% and Ra=2500, 24000. Aspect ratio A=I and Pr=-10 -2.

Comparison of the velocity fields in the 0 = 0°and 180 ° section with Ao=20%

and Ra=2500, 15000, and 24000. Aspect ratio A=I and Pr=10 -2.

Velocity and temperature fields with A0=20% and Ra=15000 for

0--0 ° and 180, 54 ° and 234 °, 90 ° and 270 °. Aspect ratio A=I and Pr=lO -2.

Velocity field in the (r, 0) plane with A0=20% and Ra=15000 at z=0.75, O,

and -0.75. Aspect ratio A=I and Pr=lO -2.

Velocity fields with A0=26.4% Ra=2500 and 15000 at 0= 0 ° and 180, 54 ° and

234 °, 90 ° and 270 °. Aspect ratio A=2 and Pr=10 -2.

Velocity and temperature fields with Ao=13.2% and Ra= 15000 at

0= 0 ° and 180, 54 ° and 234 °, 90 ° and 270 °. Aspect ratio A=2 and Pr=10 -2.

Velocity field in the (r, 0) plane with Ra=15000 at z=0.5, 0, -0.5, and -0.87.

Aspect ratio A=2 and Pr=10 -2.

Velocity field with A0=13.2% and Ra=2500 at 0--0 °, 54 °, and 90 °. Aspect ratio

A=2 and Pr=10 -2.

Velocity field in the (r, 0) plane with Ra=2500 at z---0.5, 0, -0.5, and -0.87.

Aspect ratio A=2 and Pr=10 -2.

Velocity and temperature fields with A0=l 3.2% and Ra=250000 at

0=0 ° and 180, 54 ° and 234 °, 90 ° and 270 °. Aspect ratio A=2 and Pr=l.

Velocity field in the (r, 0) plane with Ra=2500(_ at z=0.5, 0, -0.5, and -0.87.

Aspect ratio A=2 and Pr=l.
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9. APPENDIX 1:

A Fourier-Chebyshev Pseudo-Spectral method for Solving Steady 3D

Navier-Stokes and Heat Equations in Cylindrical Cavities, by J. P. Pulicani

and J. Ouazzani (submitted to Computers and Fluids, August 1990).
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A Fourier-Chebyshev Pseudospectral Method for Solving Steady 3-D

Navier-Stokes and Heat Equations in Cylindrical Cavities

By

J.P. Pulicani and J. Ouazzani

Center for Microgravity and Materials Research, University of Alabama in Huntsville,

Huntsville, Alabama 35899, USA

Abstract

A Fourier-Chebyshev pseudospectral method for solving the steady 3-D Navier-Stokes

and energy equations in cylindrical cavities is presented and discussed. The general method is

pseudo-unsteady and uses a semi-implicit finite difference scheme for the time integration. The

generalized ADI procedure is then applied to reduce the problem to successive solutions of

one-dimensional problems. The spatial discretization uses a Fourier-Galerkin approximation in the

periodic direction and a Chebyshev-collocation approximation in the other directions. Difficulties

related to the pressure are surmounted by using the artificial compressibility method. A suitable

variable change has been chosen to avoid the problem of singularity at the axis generated by

cylindrical coordinates. The method is first tested on an advection-diffusion equation and then on

the Navier-Stokes and heat equations. Finally, the method is illustrated by the problem of

convection in a differentially heated fluid.
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1. Introduction

For a long time numerical fluid mechanics has been focused mostly on two-dimensional

models. Limitations related to the computer performance (i.e. excessive CPU time and large

memory storage) have been among the main reasons for this trend, which has often prevented the

solution of three-dimensional problems. However, two-dimensionality is difficult to achieve in real

experiments. Nevertheless, increased research on numerical analysis and the improvement of

computer performance permit more efficient solution of the complete 3-D Navier-Stokes and

energy equations for several cases. Of the many numerical methods in use, those based on spectral

approximations have met with increasing success over the last ten years. The principal attributes of

spectral methods (see [1-4]) are their high accuracy and dual representation of the dependent

variables in both physical and spectral space. Another advantage of these methods is their ability to

accurately represent the solution with fewer collocation points than others (i.e. finite difference,

finite elements, etc). This last advantage makes 3-D problems more tractable when using spectral

methods. However, even though these methods have been extended to a large variety of 2-D

physical problems (such as turbulence, channel flows, natural convection, crystal growth

processes, etc) they have rarely been used for 3-D problems involving a cylindrical geometry.

Most models assume axisymmetric conditions which result in 2-D problems.

In this paper we present and discuss a Fourier-Chebyshev pseudospectral method to

solve the incompressible 3-D Navier-Stokes and energy equations. These equations are solved in a

cylindrical geometry without the assumption of axisymmetry. The general method is

pseudo-unsteady and uses a semi-implicit finite difference scheme for the time integration. The

generalized ADI ( ,_mating Direction Implicit) procedure [2] is then applied to reduce the problem

to the successi_ ,t.ion of one-dimensional problems. The spatial discretization uses a

Fourier-Galerkin approximation in the periodic direction and a Chebyshev-collocation

approximation in the other directions. Similar techniques were introduced for the solution of 2-D
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steadybinary gasmixture flows [5], and for the solutionof a diffusion equationin a domain

betweentwo concentricspheres[3]. Difficulties relatedto the incompressibilityconditionandthe

pressurearesurmountedby usingtheartificial compressibilitymethodasusedin [2,5]. Another

methodto maintaintheincompressibilityconstraintis theuseof theinfluencematrix technique[6].

This latter techniquewasappliedfor incompressibleflows in cartesianandcylindrical geometries

by [7] andin arotatingannulusby [8]. Whenusingcylindricalcoordinateswithout axisymmetry,

thecomplexityis furtherincreasedby thepresenceof asingularityattheaxis [7]. To eliminatethis

singularity,variousmethodssuchastheuseof Cartesiancoordinates[9,10],variablechange[11],

iterativetechnique[12] andspecialmesh[13], havebeenapplied.In this paperweproposeand

assesstwokindsof treatment.Thefirst oneis basedonavariablechangeandtheotheronadevice

to avoidthepointsat theaxis.

Themethodis first describedandtestedonanadvection-diffusionequationandthenon

theNavier-Stokesandheatequations.Finally, themethodis illustratedby aconvectionproblemof

a fluid in ahorizontaldifferentiallyheatedcylinder.

2. Numerical method for an advection.diffusion type equation

2.1 General method

For the description of the method, we consider the following problem :

_T
D = AT - V.VT + FT , t > 0, (2.1a)
Ot
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where,

aZr ozr a2TAT'-_+ _ _+--
3r 2 r 3r r2302 3z 2 "

(2.1b)

OT voOT aT
V.VT = Vr -- + + Vz -- , V = ( Vr, v0, Vz ), (2. lc)

3r r 30 3z

for (r,0,z) e f_ = ]0, R[ x [0, 2n[x ]-1, 1[ (see Fig. 1) and the boundary and initial conditions :

a r TIr+ brTl3--[ = , ,F Cr on F = 3f_ (2.2a)3n

T =To , at t = 0, (2.2b)

where at-, br., ci-, To, Vr, v 0, v z and F T are given functions and 3/On is the normal derivative. In

real physical problems, V is the velocity.

Equation (2.1a) is discretized with respect to the time, t = n St, using a semi-implicit

scheme for the diffusive terms and explicit for the convective term :

(1-o8tA)(Tn+l-Tn)=8t F n , (o>0) , (2.3a)

F n = ( AT - V.VT + FT )n. (2.3b)

Note that o = 1/2 corresponds to the Crank-Nicolson scheme.

The discrete equation (2.3) is solved by means of the generalized ADI procedure (as used in [2,5])

which reduces it to a set of one-dimensional problems. At each time step the following problem

will be solved :
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(1-oStA0)W =St F n,

(1-o8tAz)_F =W ,

(1-oStAr)W =W ,

Tn+l = T n + W ,

Ao =1 _ Az = _ Ar = _ + •

r2302' 3z 2' 3r 2 r_r

(2.4a)

(2.4b)

(2.4c)

(2.4d)

(2.4e)

W

A standard Fourier-Galerkin approximation is employed for the solution of (2.4a). Thus,

is expanded in a truncated Fourier series as follows

W (r, 0, z) = Wk(r,z) eik°
k=-K/2

K_I AF n(r, 0, z) = F_(r,z) eik°.
k=-K/2

(2.5)

Equation (2.4a) can then be written as

A

* 2 * ""
Wk(r,z) + G 8t kz Wk(r,z) = 8t F_(r,z),

r 2
(for each harmonic k), (2.6)

with the Fourier coefficients Wk as unknowns. From the solution of (2.6), it is then

straightforward to deduce W with (2.5). The values of W have been calculated at the collocation

points i.e.

0k=2gk/K , k=0 ..... K-1. (2.7)

The equations (2.4b) and (2.4c) are solved by means of a Chebyshev-collocation method.

For W , we apply a Chebyshev polynomial expansion in the z-direction'
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** M ,_

(r,0,z) = _ Wm (r,0) Tin(z). (2.8)
m=0

where _rn refers to the m th Chebyshev coefficient and Tm to the m th Chebyshev polynomial.

The orthogonal collocation consists in expressing the derivatives at one collocation point in terms

of values of the function at all points. For instance the second derivative is expressed by

_2lI/** M **
--{r,0,zj) = _ d(zj,z_t) (2) tlJ (r,0,z_t) ,

_z 2 _--0
(2.9)

at the collocation points" zj = cos(r_j / M) , j = 0 .... ,M. (2.1 O)

The coefficients d(zj,z_t)(2) are obtained by using the orthogonality property of the Chebyshev

polynomials and the usual trigonometric formulas [3,5]. In matrix-vector notation, the equation

(2.9) can be written as

c)2t_* [-(r,0,zj)= D t_** D = [d(zj,zl_)(2) ]

_z 2 ' ,
(2.11a)

** ** ** **

¢ =[tI" (r,0,z0) ..... • (r,0,zv.) ..... _ (r,0,ZM)] T. (2.11b)

Then by using (2.11) in the left-hand side of (2.4b), we obtain the algebraic system

Me =¢ , M=I-aSt_ , (2.12a)

* * * * ]T.= [W' (r,0,z0) .... , _ (r,0,Zl.t) , ... , W (r,0,ZM) (2.12b)

For the solution of (2.4c), the technique is identical, but a Chebyshev polynomial expansion is

applied in the r-direction for tF , that is
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*** N ***

({,0,Z)-_ E _lJn (0,Z) Tn({) ,

n=0

(2.13)

where _ refers to the transformed plane _ = 2r / R - 1 ( -1 < _ < 1 and 0 < r _ R ).

The first and second derivatives of u? are then written as

0PtI.t*** N

(_i,0,z) = _ a(_i,_n) (p) W***(_,0,z) , p = 1,2 , (2.14)
0_p _=o

_i=cos(ui/N) , ri=R (_i- 1)/2, i = 0 ..... N , (2.15)

/a2_*** la___)***\ /[ a2_,,, + ***x ***/--_ "t ri (ri,0,z) = _2 0_ 2 ai_ 0_'t0_ ]_i'0'Z) _= A (_
(2.16a)

A= X2[a(_i,_r))(2) 1 +_ [a(_i,_rl) (I)] , _,=(R 2-) (2.16b)

_) = [ W (_0,0,z) ..... W (_rl,0,z) ..... _ (_N,0,z) ]T. (2.16c)

We obtain an algebraic system by using (2.16) in the left-hand side of (2.4c) in the form-

N0 =0 , N =I-oStA , (2.17a)

0 = [ x._ (_0,0,Z) ..... _ (_n,0,Z) ..... _ (_N,0,Z) ]T. (2.17b1

The first and last equations in (2.12) and (2.17) are replaced by the boundary conditions. If the

boundary conditions are not time-dependent and if the initial condition satisfies these boundary
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conditions,thentheboundaryconditionsfor ¢ and_ arehomogeneous.Still thatin all cases,

the inversion of the resultingmatrix M and N is made only once before the time integration

begins. Thus, only matrix vector products have to be performed at each time-step, that is :

= M -1 _, then t_ = 9_ 1 ¢ and finally T n+l with (2.4d).

The right hand side of (2.4a) is evaluated by the standard pseudospectral technique [1]. The

derivatives are performed in the spectral space and the products in the physical one. These two

spaces are connected through a FFT algorithm [14]. Note that the FFT algorithm is more efficient

than the direct matrix-vector multiplication method only when the number of collocation points is

greater than 30.

When using cylindrical coordinates there is a difficulty associated with the presence of

the singularity at the axis (for I/r --)oo when r --)0). This difficulty arises because the axis is a

boundary of the computational domain only by construction of the coordinate system. Obviously,

this problem can be alleviated when the value of T(r=0,0,z) or its derivative is known at the axis

(for instance if the solution is supposed to be axisymmetric or if a natural boundary condition

exists to be imposed at this axis)_ For most physical problems, the axis cannot be considered as a

boundary in the problem (2.1); therefore a special treatment to eliminate this singularity is required.

In this paper we propose two kinds of treatment. One is based on a variable change and the other

on a distribution of points exluding the axis.

2.2 Treatment of the singularity by using a variable change

The problem of singularity can be avoided by applying to equation (2.1) the following

change of variable :

T(r,0,z) = rl_ T(r,0,z) , 13< 0. (2.18)
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Theideafor suchavariablechangecamefrom aprivateconversationwith Dr RPeyret(University

of Nice,France).A similarvariablechangefor a functionalequationhasalsobeenusedin [15,

p.l104]. Themainadvantageof thevariablechange(2.18)is thatT(r,0,z) = 0 at r = 0 for 13< 0.

For theproblem(2.1)-(2.2)it is normallynot necessaryto usethe samevariablechangefor the

velocitiessincetheyaregivenfunctions.But in orderto applythemethodto theNavier-Stokesand

energyequations,weenforcethefollowingidentities•

Vr(r,0,z)= r13Vr(r,0,z), v0(r,0,z) = r_ _(r,0,z) and Vz(r,0,z) = rl_ Vz(r,0,z). (2.19)

Applying these variable changes to (2. la) it yields

_T=F=r-_ (AT- V.VT + FT) , (2.20a)
_t

r-_AT _2_ (213+1)__ 132_+ 1_2T _2_

Or 2 r 01" r 2 r 2 3(} 2 3z 2
(2.20b)

N

r- 13V.VT = r_ _r DT--+_rl3-1_rT+rl3-1_0--+r_zD .
Dr D0 Dz

(2.20c)

Thus, equation (2.20) remains to be solved for T. Furthermore, due to the change of variable

(2.18), the boundary and initial conditions are now :

an Tlrl + br_ r-_ T + _n rx = r-6 cr_
on F1 (2.21a)

TIr_ = 0 , on r2 , (2.21b)
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_-r-13To , at t = 0 , (2.21c)

where F2refersto theboundaryr = 0 (withoutthepointsat z = +1) and F1 = F - F2.

It is now easy to apply the method described in the previous section. At each time step the problem

(2.4) is solved by replacing F n by _n ( corresponding to/_ at t = n St ), T by T, and by taking

Ar = -- + + -- in (2.4e).
_r 2 r _r r2

It is easy to obtain T from (2.18), after having calculated T (except at r = 0). Note that the value of

T at the axis can then be found by interpolation.

2.3 Treatment of the singularity by omitting the axis

In this section we propose another method to deal with the singularity which involves

excluding the points at the axis. That can be done using the Gauss-Radau collocation points in the

r-direction, between 0 and R, as suggested in [4, p.91], or by using an even number of Gauss-

Lobatto collocation points in the r-direction, between -R and R, as proposed in [16] for a simple

problem. Here we apply the latter technique to the general method described in section 2.1 by

creating a new computational interval [-R,R], which corresponds to the diameter of the cylinder.

Note that we are not forming the interval [-R,R] by extending each radial interval from [0,R] but

by joining one radial interval [0,R] at the angle 0 with another at (0 + _ ) for 0 _ [0, g]. Thus,

the radial dependence of the functions is approximated by a Chebyshev expansion between -R and

R on a well defined distribution of points which are physically meaningful. The singularity still

remains when the axis belongs to the computational domain. However, by choosing an even

number of Gauss-Lobatto-Chebyshev collocation points, the axis is automatically excluded. The

problem of inforcing a boundary condition for the r-direction at the axis, when using Gauss-

Lobatto points, is thus avoided. Furthermore, this device allows us to calculate the derivative with
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respect to the r-direction in the right-hand-side F n of (2.3a) and the term qJ in (2.4c) without

taking into account the axis. For instance, for the evaluation of q_ we need to discretize the

equation (2.4c). This requires the use of the formula (2.16) in which the collocation points,

between -R and R, write as :

ri = R _i , _i = cos(_i / N) , i = 0 .... ,N. (2.22)

It follows that in (2.16a) :

= 1 /R (2.23)

From a practical point of view, values of N, such that N=5 n 3P (n and p being integers), must be

chosen when using the FFT algorithm [14] ( to use the pseudospectral technique for the derivatives

relative to the r-direction in F n ) in order to avoid the points at the axis. Of course, to remove this

constraint on N, it is always possible to use formulas of type (2.11). In this case, the FFTs

would be replaced by products of matrices (only for the calculation of the derivatives related to the

r-direction).

2.4 Assessment of these methods with an analytical solution

In order to evaluate the above methods on problem (2.1)-(2.2), we have chosen the exact

solution

Tex(r,0,z) = F(r) H(0) G(z) + C , ( C _/R ) ,

F(r) = r7 (r-R) ; G(z) = (z 2 -1) (z 8 + 1) ; H(0) = sin 0 + cos(90 - 1) ,

(2.24a)

(2.24b)
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from whichwedefinetheDirichlet boundaryconditions

TIr,-C , on rl. (2.25)

Thevelocitiesarethen

Vrex = sin0 r (R2- r) ,

v0ex= cos0 (2r R2- r2(3 + 2z)) ,

Vzex= sin0 r (1- z2).

(2.26a)

(2.26b)

(2.26c)

It thenfollowsthatFTis givenby

FT= V.VT - AT. (2.27)

Thechoseninitial conditionis

To(r,0,z)= Tex(r,0,z)+ 80 (R- 05 r (z3- z) sin40. (2.28)

ThecomputationswerecarriedoutonaCrayXMP computerfor thecaseC=l andR=I.

In the tablespresentedbelow, the residualof O [denoted Ro}, the L2 and Sup errors of O

s_ L2andE_ calculatedon the(denoted F__ ancl E_ respectively) are displayed. Note that R e , E_ are

collocation points of O and that O = {T, Vr, v0, Vz}. Furthermore

R e = Max i,k,j St
(2.29)
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N-I K M-I
{N-I)K(M-I) i=I k=1 j=l

[O , (ri.Ok,zj)- O .(ri,Ok.Zj)l2 (2.30)

ESUp __) - Max i, lO (ri,0 ,zj)- Oox(ri,0k,zj)l, (2.31)

with i=l,..,N-1 , k=l,..,K ,

aSrczM= numerical solution of aS.

j=I,..,M-1 ; aSex = exact solution of O and

The problem (2.1)-(2.2) was solved by means of the following methods •

- Method I described in section 2.1 by enforcing the real value of T at the axis (i.e. T-C at r=0),

- Method II described in section 2.2,

- Method III described in section 2.3.

Note that method I is not applicable to real problems because the values of independent variables

are not known at the axis. This method is nevertheless presented in this paper in order to assess the

effect of the variable change used in the method II to treat the singularity (effect on the accuracy

and rate of convergence).

In all tables, we denote :

- N r the number of collocation points between r = 0 and R, for methods I and II,

and between r = -R and R, for method III.

- K 0 the number of collocation points between 0 = 0 and 2n, for methods I and II,

and between 0 = 0 and 0 = n for method HI.

- M z the number of collocation points between z = -1 and I for all methods.
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Table 1presentsresultsconcerningtheconvergence(towardsthesteadystate)andthe

accuracyof all threemethods,after 200 timecycles.Theseresultscorrespondto a parametero

(occurring in (2.3)) fixed to 0.5 and 13 equal to-1 (occurring in (2.18) and (2.19)). For

approximately the same number of points, the accuracy is better with methods I and II than

method III. With methods I and II, the machine accuracy (= O(10 -12) ) is reached with

only 10x20x13 (i.e. NrxK0xM z) points, after 200 iterations. For method lII, when

taking Nrx K 0 × M z = 26 x 10 x 13, the error stagnates at O(10 -8) after 200 time cycles. To

decrease the error to O(10 -10) with this method, the number of points must be increased

to Nrx K 0 x M z = 46x 10 x 13. Despite the increase of points in the r-direction to N r = 46, the

rate of convergence has not diminished significantly (residual R T = 9.6 10 -10 after 200 iterations).

Whereas, in methods I and II, the increase of polynomials in the r-direction affects much more the

speed of convergence. Table 1 shows that for these methods, the residual after 200 time cycles,

is O(10 -4) when N r = 21. To reach an accuracy of O(10 -12) with such number of points in the

r-direction, 500 iterations are needed. When increasing the number of polynomials in the

r-direction, the density of points near the origin, for methods I and II, is significantly increased as

compared to the one in method Ill. This leads to much stronger values of the term" 1/r" near the

axis in the two first methods than in the last one. Therefore, for stability reasons, the time step for

methods I and II is smaller than the one for method III. This restriction on the time step St

decreases the speed of convergence of method I and II relative to method 1_I/. A rigorous stability

study here is quite complex and would be beyond the scope of this paper. However, we must point

out that the method III gives good results for solutions (2.24)-type for they do not involve strong

gradients near the axis (in (2.24), 3T/_r = 0 at the axis). When the solutions are stiffer close to the

axis, method HI is not as well adapted as method II, because the number of polynomials needed to

represent the solution accurately becomes unacceptable. One possibility to overcome this difficulty,

would be to use a mapping procedure as in [3,17], to concentrate the distribution of points in

zones where sharp gradients in the solution are exhibited. For approximatively the same number of
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polynomials, the CPU time per time step needed for technique III is about 1.5 times higher than

the one required by the other methods. This difference is mostly due to the switches between the

two kinds of coordinate system associated with this method (see section 2.3). These switches also

generate programming difficulties and memory problems. Table 1 shows that methods I and II

have the same order of accuracy but that the r ate of convergence is greater with H than I. This

difference of speed is probably due to the better properties of the ADI operator (1- cr 8t At)

following the variable change used in section 2.2. This difference has been found to be smaller

when the number of points is higher.

Finally, for more flexibility and efficiency, we have chosen the technique II to extend the

method to Navier-Stokes and energy equations. By exploring different values of 13, we have noted

that for 13> -1 the accuracy is poor and for [3 < -1 the method is unstable (even when using very

small time steps). In fact, the only value for which the method II works efficiently is 13- -1.

Table 2 shows the results of method II for different numbers of points and values of o. The value

cr = 0.5 was found to optimize the rate of convergence. In [3] for the solution of a diffusion

equation in a domain between two concentric spheres the optimal value of o was 0.6. In the

remainder of this paper we shall use 13= -1 and a -- 0.5.

3. Numerical method for the Navier-Stokes and heat equations

3.1 Description of the method

In this section a method for solving Boussinesq-Navier-Stokes and energy type

equations is presented. We use primitive variables [18] in a fixed reference frame. The problem to

be solved will be the transport-diffusion type equation (2.1) coupled with

OVz PrAvz V.Vvz OP= - - _ + cos(at# + b) Pr Ra T + F,,, ,
Ot Oz

(3.1a)
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t)v----2-r----Pr Avr - V.VVr - 0p + sin(cq0 + d) sin(e0 + f') Pr Ra T + Fv, ,
3t Or

(3.1b)

3v-----£°= Pr Av0 - V.Vv o - 1 0p + sin(cq_ + d) cos(e0) Pr Ra T + Fro ,
3t r 30

(3.1c)

3v_ L bvo + 3VzV.v=Vr +--+ _=0
r 3r r 30 3z

(3.1d)

where Avz and V.Vvz are obtained by replacing T by Vz in (2. lb), (2.1c) and (2.1d), and

AV r O2Vr 1 OVr _ v r .J_ 32Vr 02Vr .2.. _v0=_+ + --+_- , (3.1e)
3r2 r 3r r2 r2302 3z 2 r2 30

_L t)2Vo t)2v 0 20VrAv 0=32v0+1 3Vo Vo+ +_+_
_)r2 r t)r r2 r 2 _)02 3z 2 r2 O0

(3.1f)

3vr vo 3Vr _ 3Vr
V.Vvr =vr_+_- +Vz-- ,

_r r 30 r 3z
(3.1g)

_Vo + vo 3Vo + v_vo + v_ 3voV.Vv 0 = Vr -- _ .
3r r 30 r 3z

(3.1h)

The above problem is solved in the domain ill,with a, b, c, d, e, f, q0, Pr and Ra as parameters,

and Fv,, F,,,, F,, 0as given functions. The initial and boundary conditions will be defined later for

each specific problem. The equations (2.1) and (3.1a,b,c) are solved by using the technique

explained in section 2.2 with the variable changes (2.18) and (2.19) for T, Vr, v0 and Vz, and
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p(r,0,z) -- r13"_(r,0,z), when 13= -1. For the problem (3.1), the typical numerical difficulties lie

in the constraint V.V = 0 and the lack of boundary conditions for the pressure. In the steady case,

these difficulties can be overcome by using the artificial compressibility method [2,5], which

involves a perturbed continuity equation

_r, + _ V.V = 0 , (3.2)
&

where e is a strictly positive constant. This equation has no physical meaning before the steady

state a/at = 0 is reached. Another possible technique to deal with the problem of pressure has been

used in [19] to solve 3-D Navier-Stokes and energy equations in a parallelepiped domain. This

method is analogous to the projection method [2] with an elegant iterative process. By applying the

above variable changes, equation (2.1) transforms into (2.20) with T as unknown and the system

(3. la,b,c)-(3.2) becomes

aVz _7 r(Pr Avz- V.Vvz)-a_"-= = --+cos(aq)+b)PrRa_+rFv, ,
at az

(3.3a)

aVr = _= r(Pr AVr ° W.Vvr)+ _--'- a._ffp
at r

+ sin(cop + d) sin(e0 + f) Pr Ra T + r Fv, (3.3b)

aV0 =_= r(Pr Av 0 - V.Vvo)- la_ + sin(cq) + d) cos(e0) Pr Rat T +r F,,, , (3.3c)
at r 30

l +Ev. =o
r_t

(3.3d)
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with the diffusive term r Avz and the convective term r V.Vvz obtained by replacing _ by Vz in

(2.20b) and (2.20c), and

rAvr D_vr 1DVr -L D2_r Dz_vr 2DV°..... + + - , (3.3e)
or2 r Or r2302 3z 2 r2 30

r Av 0 = 3z"v° - 1 DVo + I__32_Vo+ 3Z"v0 + 2 3Vr, (3.30

Dr2 r Dr r2 302 3z 2 r230

rV.Vvr=_r 3Vr -2 __/LD_r _02+_zD_r__V_L_r + __

r or r2 r2 30 r2 r 3z
(3.3g)

 v.vvo  Dvo VoDVo+V DVo
r Dr r2 DO r Dz

(3.3h)

v.V=lDV iD% t--+ --+ (3.3i)
r Or r2 DO r Dz

The new system to be solved is equation (2.20) coupled with equations (3.3a,b,c,d), with

T, Vr, v0, Vz and'_ as unknowns. The system will be solved by the following steps :

(i) First, we calculate _+1 by using the following explicit scheme on (3.3d) :

_+, = _n. 8t 13r (V.V) n. (3.4)
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(ii) With _n, _r, _0,and_z, wededuce_n from (2.20)andthenfind_n+l, by replacing

02 i___ 1 (2.4).
Ell an _ -by F , T by T, and by taking Ar = r 3r + in

Or2 r 2

=.,.+1 _n,n+l _r,,n+l
(iii) Using _,n+l, _-n+l, _r, v"_, and _z, we then calculate #_., , and

relative to (3.3a), (3.3b) and (3.3c) respectively.

(iv) We then deduce _z +1 by replacing F n by _n,n+l, T by Vz, and use the same operator

A r as for _I"n+l in (2.4).

_n,n+l

(v) For the calculation of_'nr +1 wereplaceFn by (5 , T by_r and set

Ar = -- - in (2.4).
Or2 r _r

_n,n+l

(vi) Finally, _o +I is computed by replacing F n by H , T by To and by taking the

same operator A r as for _r +1 in (2.4).

_nThe right-hand-side corresponds to F at the time t = n St. The computation of

_n,n+l _n,n+l hn,n+l, and is made by using the velocities at the time t = n St, and the pressure

and the temperature at the time t = (n+l)_t. For the stages (iv), (v) and (vi), the operators A0, Az

and Ar are multiplied by Pr.

3.2 Evaluation of the method with an analytical solution

In order to assess the method described in Section 3.1 on problem (2.1)-(3.1), we

have chosen the exact solutions (2.24) and (2.26a,b,c) for T, v r, v 0 and v z , respectively, and

Pex = cos(20) r3 (1 - z2). (3.5)
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From theseexactsolutions,we readilydeducetheDirichlet boundaryconditionsof thevariables

andtheforcing termsFT(see2.27),Fv,,F,,e and Fv,. The chosen initial conditions are (2.28), for

T, (3.5) for p, (2.26a,c) perturbed with

Pv - 20 (R - r) (z 2 - 1) cos 50 , (3.6)

for v r and v z, and (2.26b) perturbed with r Pv for v 0. The calculations have been done with

Pr=Ra =C =R = 1, a =b =c =e =0, f=d = rr/2.

Table 3 shows the convergence and accuracy results of the method, after 2000 time

cycles, when St = 10 -2 and N r x K 0 x M z = 10 x 20 x 11. After this number of iterations the

maximum of accuracy has been almost reached. In these calculations we noticed that the maximum

error was always located at the collocation points close to the axis. This is certainly a consequence

of the variable change used to remove the singularity. We remark that the rate of convergence is

connected to the arbitrary constant 13 (occurring in (3.3d)). For this specific problem, with this

number of polynomials, and this value of St, the value 13= 30 was found optimal. An interesting

possibility for improving the convergence, would be to employ a technique analogous to [4,

p.149] to adjust the coefficient 13at each time step. Note that the initial conditions are totally

different from the final steady solutions. In real physical problems we generally choose the initial

conditions to be as close as possible to the expected ones.

3.3 Evaluation of the method on two simple physical problems

In this section we shall apply the above method to two simple convective flow problems

of incompressible fluids using the real Navier-Stokes and heat equations within the Boussinesq
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approximation.The goal is not to studythesephysical problemsbut to assessthe methodby

comparingit with two otherones.Thus,we shallhaveto solvetheequation(2.1) with FT = 0

(corresponding to the heat equation) coupled with equations (3.1) when

Fv,= Fv0= Fv,= b = d = f = 0 anda= c = e = 1(correspondingto theNavier-Stokesequation),in

the domain_1. Theseequationsarewrittenin dimensionlessvariableswith the Prandtl number

Pr and the Rayleigh number Ra asphysicaldimensionlessparameters.For the comparison

with other methods,wehave chosentwo physicalproblemswhich have 2-Dsolutions. The

first generatesan axisymmetric solution and the secondonea solution independentof the

axial direction. Theother methods chosen for the comparison, were designed for solving 2-D

Navier-Stokes and heat equations. The Rayleigh number Ra has deliberately been chosen to be

small, in order to avoid problems related to the accuracy of each method. In forthcoming sections

we shall denote the maximum values of v r, v e, v z, v x and Vy by v r max, v0 max, Vz max,

Vx max and Vy max, respectively. The variables v x and Vy are the velocities in Cartesian

coordinates such that v x = vr cos O - v e sin 8 and Vy = v r sin 0 + v e cos e. As these maxima

are calculated at the collocation points particular to each method, small differences are expected in

the results.

3.3.1 Axisymmetric solution

For this problem, the fluid is differentially heated in a vertical cylinder having rigid walls

as boundaries. The axisymmetric convective flow is generated by an axisymmetric non-linear

temperature distribution at the initial state. The equations described earlier were solved with 9 =0

(i.e. gravity parallel to the axis r = 0), Pr = 1, and the boundary and initial conditions

Vr=V0=Vz=0 on Y'I ,

T=0atz=l , T=I at z=-I , T=(z-1)2/4 at r=R ,

(3.7a)

(3.7b)
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Vr= v0 = Vz = 0 at t = 0 , (3.8a)

T = (z - 1) 2 / 4 at t = 0. (3.8b)

Table 4 gives the values of v r max and v z max, at different Rayleigh numbers, obtained with the

finite volume program PHOENICS [20] in cylindrical coordinates, the finite element code FIDAP

[9,10] in Cartesian coordinates and our present method. The calculations were done by taking

N rxM z=18x36 withPHOENICS, N rxM z=17x31 withFIDAP andN rxM z- 13x19

with our method. Note that for PHOENICS and FIDAP the mesh was regularly spaced. We can

observe a perfect agreement between our results and those given by FIDAP and a small

discrepancy with PHOENICS which yields about 5% higher values. The error associated with the

fin:st-order f'mite volume approximation used in [20] has the effect of slightly increasing the values

of v r max and v z max • Note that these results were obtained with an optimum mesh size when

using FIDAP and PHOENICS. Fig.2 exhibits the velocity and temperature fields when Ra = 150.

We can see that v z max is located on the axis.

3.3.2 Solution independent of the axial direction

In this section, the fluid is heated from the side in a horizontal cylinder with rigid walls.

The convective flow is buoyancy generated by taking q) = rt / 2 (i.e. gravity perpendicular to the

axis r = 0), Pr = 1, and the boundary and initial conditions

Vr = v0 = Vz = 0 at the sidewalls (r=R) ,

_v...._5_r= Ov 0 = _v_.._z= 0 at the endwalls (z -- + 1) ,
Oz Oz _z

T=cos0 on F1 ,

(3.9a)

(3.9b)

(3.9c)
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Vr- v0=Vz = 0 at t=0, (3.10a)

T=rcos0 at t=0. (3.10b)

By enforcing Vz = 0 in the equations, the solution becomes independent of the axial direction.

Table 5 shows the values of v x max and Vy max, obtained with Ra = 60 and 120, first by using

FIDAP and then our method. The calculations with FIDAP were done by taking a regularly spaced

Cartesian grid 29 x 29 and N r x K 0 = 13 x I8 with our method. As in the previous section, we

obtain a good agreement between these two methods. Fig.3 presents the velocity and temperature

fields when Ra = 120.

4. Application to a natural convection problem

In this section the method is illustrated with a convection problem of a differentially

heated fluid in a horizontal cylinder having a length 2H and a diameter D (A=D/2H is the aspect

ratio). The vertical endwalls of the cylinder are maintained at constant temperatures T1 and T2

while the horizontal boundary is conducting. The convective flow is generated by the buoyancy

force as soon as T2_:T1. The intensity of the resulting flow is connected to the magnitude of the

difference T2-T1. All boundaries of the cylinder are rigid with no-slip conditions for the velocities.

The mathematical model is given by the same Navier-Stokes and energy equations as used in

section 3.3 where ¢p= n / 2 (i.e. gravity perpendicular to the axis r = 0). These equations are cast

in dimensionless form with H, H2/_:, rfrI, and T2-T1 as characteristic scales for lenght, time,

velocity and temperature, respectively. The resulting dimensionless computational domain is

111 with R = A. The physical dimensionless parameters are the Prandtl number Pr = v/1¢ and

the Rayleigh number Ra = gcxH3(T2-T1) / K'v where g is the gravitational acceleration, ¢x the
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thermal expansion coefficient, v the kinematic viscosity, _ the thermal diffusivity. The

dimensionlessboundaryandinitial conditionsare

Vr= v0- Vz-- 0 at the endwalls (z = + 1) and the sidewalls (r = R) ,

T=0atz=l , T=I at z=-I , T--0.5(1 +z) at r=R ,

(4. la)

(4.1b)

Vr=V0=Vz=0 at t=0 , (4.2a)

T = 0.5 (1 + z) at t = 0. (4.2b)

Table 6 shows the values of v x max, Vy max and vz max, obtained with Pr = 1, A--1 and

Ra = 60, 100 and 600, first by using the finite element code FIDAP and then our method. For

FIDAP we have employed an irregularly spaced Cartesian grid with Nx x Ny x Nz = 17 x 17 x 11,

similar to the example depicted by a figure in vol.3, section 35-27, of the FIDAP manual [9]. We

denote Nx, Ny and Nz the number of nodes in the x, y and z directions respectively. For our

method all calculations (tables 6 and 7) have been performed with a spatial resolution defined

by NrxK0xMz = 13x 18x 19 and a time-step 5t varying between 3. 10 -3 and 1. 10 -3

according to the stiffness of the solution. The product 5t E occurring in (3.4) is maintained at the

value 0.2 for all computations related to this section. Table 6 shows good agreement between these

two methods. Table 7 summarizes the details of our computations corresponding to Pr = 1, A = 1

and Ra between 1000 and 13000. The starting condition (4.2) has been used only for the lowest

Rayleigh number. For the others, the starting condition is the solution calculated with a lower

Ra. With the chosen number of polynomials, on a Cray XMP computer, the computational cost for

one time-step is 0.081 second. Since the goal was to illustrate the method and its applications

rather than undertake an exhaustive study, we did not try to explore the solutions for

Ra _> 13000. The physical study of this problem has been carried out in [21-23] with other

parameters by means of a finite difference method. Table 7 shows in particular that the time step
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decreases with increasing Ra which leads to a corresponding increase of the number of cycles.

However, even with 6000 cycles the total CPU time remains reasonable (486 sec.). Note that for

high Ra we have stopped our calculations when the divergence (corresponding to (3.1d))

V.V _ 10 "5. For these values of V.V, we noticed that the values of the velocity and temperature

fields do not change significantly when decreasing the divergence to lower values. This fact was

independently pointed out in [24]. Figures 4 and 5 exhibit the velocity and temperature fields when

Ra = 13000. The projection of these fields in the (r,z)-planes is shown in figure 4 for 0 equal to

0 °, 40 ° and 80 °. At 0 = 0 °, the flow has one roll in each corner. At 40 ° and 80 °, it consists of

roughly one cell with a contraction in the middle. Fig. 5 exhibits the fields at various cross-

sections (r,0). At z--0.76, i.e. close to the hot endwall, the flow is ascending and perfectly

symmetrical to the descending flow at z = --0.76, i.e. close to the cold endwall. At z -- 0, it is

mainly directed from the side to the middle with two secondary flows in the vicinity of the wall

crossing the median axis parallel to the gravity. Note that for Ra = 13000, the flow encounted

could be defined as a" Boundary Layer Driven Regime ", as proposed by [23].

5. Conclusion

A Fourier-Chebyshev pseudospectral method has been proposed for solving steady 3D

Navier-Stokes and heat equations in cylindrical cavities. The principal computational difficulties in

such geometries come from the presence of the singularity at the axis and the number of collocation

points required to accurately represent the solution. Concerning the ftrst difficulty, two techniques

have been considered and evaluated. One is based on a variable change and the other on a special

distribution of the collocation points. The technique using the variable change has been found more

adapted to the general method. Moreover, the use of a pseudospectral method admits an accurate

representation of the solution with a small number of collocation points.
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Thispaperhas been focused on the solution of steady problems. Therefore, difficulties

connected to the incompressibility condition and the pressure could be efficiently circumvented by

means of the artificial compressibility method. The latter, coupled with the use of the ADI

procedure in the general method leads to a very fast and accurate algorithm for computing steady

3-D incompressible flows. However, for an extension of this method to unsteady problems, the

present way to deal with pressure could be time consuming, due to the resulting iterative process.

A better technique to extend it to time dependent problems, might be the use of a semi-direct

method as in [19], to satisfy the divergence free field. Finally, the application of our method to a

natural convection problem, has shown that this technique can cope efficiently with relatively large

Rayleigh numbers.
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Table headings

Table 1 - Convergence and accuracy after 200 time cycles for methods I, II and 11I.

Table 2 - Convergence and accuracy for method 17.

Table 3 - Convergence and accuracy for problem of section 3.2.

Table 4 - Accuracy for problem of section 3.3.1.

Table 5 - Accuracy for problem of section 3.3.2.

Table 6 - Accuracy for problem of section 4.

Table 7 - Results regarding the problem of section 4.



Table 1

Method

II

III

N r x K 0 x M z

10 x 20 x 13

21 x20x 13

10x 20x 13

21 x20x 13

26x 10x 13

46x 10x 13!

St

9.0 10 -3

4.0 10 -3

1.2 10 -2

4.0 10 -3

1.6 10 -2

1.0 10 -2

RT (for I & 12"1)

R_ (for II)

7.65 10 lo

1.22 10 -4

4.96 10 -12

1.05 10 -5

1.82 10 -11

9.60 10 lo

1.24 10 -11

1.33 10 -6

8.38 10 -13

7.32 10 -7

2.92 10 -9

2.51 10 -ll

8.36 10 "11

2.47 10 5

7.37 10 -12

2.00 10 -6

1.72 10 -8

1.80 10 "lo



Table 2

N r x K 0 x M z

9 x 16x9

10x 20x 11

10x 20x 11

10x 20x 11

13 x24x 13

0.5

0.5

0.75

1.0

0.5

5t

2.0 IO -2

1.2 10 -2

1.2 10 -2

1.2 10 -2

0.8 10 -2

Number

of

cycles

50

200

300

400

300

R¥

8.21 10 -7

4.68 10 -12

1.60 10 -11

7.24 10 -9

1.78 10 -12

3.98 10 -3

4.12 10 -13

1.16 l0 -ll

9.37 10 -9

1.68 10 12

1.76 l0 -2

1.23 10 "12

1.07 l0 10

1.01 10 -7

5.64 l0 12



Table 3

T

vz

Vr

vo

P

E

30

25

20

30

25

20

30

25

20

30

25

2O

30

25

20

9.13 10 -13

9.92 10 -13

I.I2 10 -12

2.19 10 -9

7.52 10 -9

2.38 10 -8

5.47 10 -11

1.87 10 -lo

5.91 10 -lo

9.08 10 -11

3.06 10 -lo

9.56 10 -lo

6.04 10-6

2.07 10 -5

6.59 10-5

7.63 10 -13

7.74 10 13

8.33 I0 -13

1.47 10 -8

5.85 10 -8

2.24 10 -7

2.46 10 10

9.51 10 -10

3.52 10 -9

8.70 10 -10

3.37 10 -9

1.25 10 -8

1.32 10 -7

5.19 10 -7

1.94 10 -6

Sup
E,_

2.23 10 -12

2.29 10 -12

2.43 10 -12

1.53 10 -7

6.30 10 -7

2.48 10 -6

1.57 10 -9

6.29 10 -9

2.42 10 -8

6.42 10 -9

2.59 10 -8

1.00 10 -7

9.86 10 -7

4.00 10 -6

1.56 10 -5



Table 4

Ra

10

100

150

PHOENICS

Vzmax

1.77 10 -2

1.91 10 -1

3.02 10 -1

Vrmax

4.15 10 -3

4.50 10 -2

6.90 10 -2

Vzmax

1.66 10 -2

1.80 10 -1

2.82 10-1

FIDAP

vrmax Vz max

1.66 10 -2

1.80 10 "1

2.82 10 -1

3.98 10 -3

4.28 10 -2

6.64 10 -2

SPECTRAL

Vrmax

3.96 10 -3

4.23 10 -2

6.59 10 -2



Table 5

Ra

60

120

FIDAP

Vx max Vy max

1.39 1.41

2.66 2.69

SPECTRAL

Vxmax Vymax

1.38 1.40

2.62 2.68



Table 6

Ra

6O

I00

6OO

max

0.10

0.18

1.44

FIDAP

Vy max

0.74

1.17

5.20

VZ max

0.87

1.44

6.50

Vx max

0.10

0.17

1.38

SPECTRAL

Vymax

0.71

1.17

5.52

Vzrnax

0.86

1.43

6.96



Table 7

Ra

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

8t

3.0 10 -3

3.0 10 -3

3.0 10 -3

3.0 10 -3

3.0 10 -3

3.0 10 -3

2.0 10 -3

2.0 10 -3

2.0 10 -3

1.5 10 -3

1.5 10 -3

1.5 10 -3

1.0 10 -3

Number

of

cycles

2000

3000

4000

4000

4000

4000

4000

4000

4000

5000

5000

5000

6000

V.V

(3.1d)

1.1 10 -4

5.0 10 -5

2.2 10 -5

3.0 10 -5

4.0 10 -5

5.0 10 -5

6.4 10 -5

8.8 10 -5

1.3 10 -4

3.7 10 -5

6.1 10 -5

9.6 10 -5

2.9 10 -5

Vr max

7.82

11.72

14.29

17.05

19.40

21.53

23.44

25.18

26.77

28.24

29.62

30.90

32.15

v0 max

7.91

12.45

16.20

19.45

22.09

24.80

27.33

29.59

31.62

33.44

35.61

37.69

39.66

Vz max

9.89

14.82

18.26

20.99

23.29

25.35

27.39

29.26

31.01

32.65

34.21

35.68

37.09

Initial

condition

Sol. (4.2)

Sol. at Gr=1000

Sol. at Gr=-2000

Sol. at Gr=3000

Sol. at Gr--4000

Sol. at Gr=5000

Sol. at Gr=6000

Sol. at Gr=7000

Sol. at Gr=-8000

Sol. at Gr=-9000

Sol. at Gr=10000

Sol. at Gr=11000

Sol. at Gr=-12000



Figure legends

Fig. 1 Geometry of the enclosure and flame of reference.

Fig. 2 Problem of section 3.3.1 • (a) velocity field, (b) temperature field for Ra = 150.

Fig. 3 Problem of section 3.3.2 • (a) velocity field, (b) temperature field for Ra = 120.

Fig. 4 Problem of section 4 : (a) velocity field, (b) temperature field, in the (r,z) planes,

at Ra = 13000 for 0 = 0 °, 40 ° and 80 °.

Fig. 5 Problem of section 4" (a) velocity field, (b) temperature field, in the (r,0) planes,

at Ra = 13000 for z = 0.76, 0 and -0.76.
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